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Summary 
 
The effects of source and receiver motion have been 
discussed by a number of authors. However, no attention has 
been paid to the influence of marine currents, which can 
attain velocities approaching typical seismic shooting 
speeds. It is argued that such currents may have a significant 
effect for OBN analysis, 4D surveys and reconciling data 
shot in opposing current directions. A theoretical basis is 
introduced that systematically applies Galilean 
transformations and wave extrapolations to describe the 
effects of this motion that includes source and receiver 
motion. The results are completely consistent with the theory 
of Doppler (1842) and agree with the theory of Hampson & 
Jakubowicz (1995). Several methods are described to 
compensate for the distorting effects of these currents. 
 
Introduction 
 
Since sources and receivers typically move several orders of 
magnitude slower than seismic waves, it had originally been 
assumed that any motion effects were negligible. However, 
Dragoset (1988) showed that there is a significant phase 
effect for moving sources emitting long signatures. This is 
most noticeable at high boat speeds, frequencies and 
apparent dips. Hampson & Jakubowicz (1995) presented an 
exact theory which described the motion effects of both 
sources and receivers, noting that reciprocity does not hold 
for moving sources and receivers. They showed that their 
theoretical formulation was in complete agreement with 
Doppler (1842) and they described ways to compensate for 
these effects during the processing. Recently there has been 
renewed interest in vibratory sources which has spawned 
further work, for example, Qi & Hilterman (2016) and 
Guitton et al. (2021). 
 
At normal seismic shooting speeds of, say, 2-2.5 m/s, it is 
usually considered appropriate to compensate for the effects 
of motion. To date, it has been assumed that the shooting 
medium is stationary. However, this is not necessarily a safe 
assumption. Indeed, marine and fluvial currents are 
ubiquitous, ranging from steady persistent currents to 
sporadic, sometimes turbulent currents. The well-known 
Loop Current in the Gulf of Mexico is, according to NOAA, 
“traveling at speeds of approximately 0.8 m/s” (Gulf of 
Mexico Loop Current, 2023). On the NW Shelf of Australia 
currents of up to 1 m/s exist (Chevron Corporation, 2015). 
The speed champion of persistent currents is claimed to be 
the “Gulf Stream” with an average speed of 1.6 m/s and a 
maximum speed of about 2.5 m/s (How fast is the Gulf 
Stream?, 2023). There is even evidence that different 
currents can operate at different depths. Since current speeds 

can approach or even exceed vessel speeds, we should 
anticipate that currents will affect seismic data in a 
somewhat similar manner to source and receiver motion. 
 
In this paper I develop a theory for the effects of currents on 
seismic data based on systematic application of Galilean 
transforms and wave extrapolation. It is demonstrated that 
this theoretical approach is completely consistent with the 
theory of Doppler (1842). Furthermore, it agrees with the 
theory of Hampson & Jakubowicz (1995) as current 
velocities tend to zero. I use this theoretical approach to 
explore the effects of currents on marine seismic data and 
find that under certain circumstances currents significantly 
distort seismic data. Finally, I propose several ways to 
compensate for these effects. 
 
Theory 
 
Let’s begin with a simple motivating example. Consider a 
stationary medium overlying a medium moving with 
velocity u . If an impulse is injected at sx  on the boundary, 

a semi-circular wavefront, centred on sx , will radiate with 

velocity, v , into the upper medium. A second semi-circular 
wavefront will radiate into the lower medium centred on the 
moving point sx ut  as depicted in Figure 1. 
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Figure 1: An impulse injected between a stationary and a moving 
medium. The lower wavefront is displaced by ut. 
 
If the lower medium has thickness, z , with a stationary 
receiver on the bottom at rx x , it may be shown that the 

arrival time is given by  
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This turns out to be the same configuration that models the 
direct arrival time at an OBN from a stationary impulsive 
source in a current moving with velocity u . We can evaluate 
how the current affects the arrival time. Let us explore the 
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exaggerated case of 500 m/su  for illustration alongside a 

more realistic case, 1 m/su  . With v=1500 m/s, z=1000 m 

and xr=0, the results are shown in Figure 2. The arrival is 
horizontally sheared with the apex displaced by /u z v . 

The arrival time at 2000 m offset is ~1 ms different to the 
stationary case. This is significant for adjustments such as 
OBN location, clock timing and geophone rotation that rely 
on direct arrival timing. The effect would be compounded if 
it had to be reconciled with a second source line acquired in 
a reversed current direction or comparing 4D surveys 
acquired under differing current conditions. This simple 
example shows that there is an effect that deserves 
investigation. 

a) b)

 
Figure 2: The direct arrival time at an OBN taking the current into 
account. a) The exaggerated case of u=500 m/s. b) A realistic case 
of u=1 m/s. The dashed line shows the time difference from u=0. 

Galilean Transforms 

 
Galilean transformations are used to map a space-time event 
between two inertial reference frames, O and O , which 
differ only by the constant relative motion between them. 
They are based on Newtonian physics, assuming time and 
space are absolute. Our discussion is limited to 2-
dimensional space-time for simplicity, however, extension 
to higher dimensions naturally follows. It is usually assumed 
that the coordinates coincide at 0t   and that only relative 
motion takes place. If u is the velocity of O w.r.t. O  then 
the Galilean transformation is given by 
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This is a shear transform mapping an event at x in O to x  
in O , an apparent shift of ut . In terms of a wavefield, this 

says, that      , ,p t x p t x x ut     which is a time 

variant spatial shift in the opposite direction of u. We may 
consider seismic sources, marine currents, the earth and 
seismic receivers to all be inertial reference frames. 
Therefore we may use equation (2) to relate the wavefields 
in these adjacent inertial reference frames. Let us begin by 
showing that source and receiver motion using this approach 
is identical to Hampson & Jakubowicz (1995). 

 
Source motion 
 
A source moving at su w.r.t. the water will be remapped by 

the Galilean transform from the moving source reference 
frame to the stationary water reference frame as 

s s sx x u t  , an apparent time variant shift of su t , in 

agreement with Hampson & Jakubowicz (1995). 
 
Receiver motion 
 
A wavefield in stationary water will be remapped to a 
receiver moving at ru w.r.t. the water by the Galilean 

transform from the stationary water reference frame to the 
moving receiver frame as r r rx x u t  , an apparent time 

variant shift of ru t , again in agreement with Hampson & 

Jakubowicz (1995). 
 
The goal now is to describe a systematic model for seismic 
acquisition that includes currents. The source side and the 
receiver side will be described separately and for brevity we 
omit free-surface effects. 
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Figure 3: A systematic model for moving sources, receivers and 
marine currents. 

 
Source-Water-Earth System 
 
What is the effective source just below the seabed in a 
stationary earth? Although any number of horizontally 
stratified current layers might be included, we will assume 
for brevity that there is a single moving body of water. We 
have the tools to move between inertial reference frames, 
however, we also need to incorporate wave propagation 
across the water layer. One choice is to use the 1-way wave 
equation to depth extrapolate the time dependent wavefield 
through the water inside the inertial co-ordinate system of 
the moving water. That, along with the Galilean transforms, 
completes the left-hand side of the system shown in Figure 
3. The source signature undergoes transformation into the 
moving water layer, that wavefield is downward continued 
to the seabed, where it undergoes another transformation to 
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place the wavefield in the inertial frame of the stationary 
earth. This wavefield is the effective source. Figure 4 
illustrates the source-water-earth system using us=0, uw=500 
m/s, z=500 m and v=1500 m, for a vibratory source and the 
exaggerated motion with a) being the signature at the source, 
b) being the signature after transformation to the moving 
water reference frame, c) is the wavefield just above the 
seabed and d) is the wavefield just below the seabed. In this 
case the Doppler shift is absent in d) but note the 
displacement of uz v and the asymmetric dips which are 

the effects of the current. The swept signature is to show any 
Doppler effects. 

 
Figure 4: The steps in the source-water-earth system: a) a vibratory 
source signature, b) the signature in the water, c) the source 
wavefield just above the seabed, and d) the wavefield just below the 
seabed; the effective source signature. 
 
Earth-Water-Receiver System 
 
Given an upgoing wavefield just below the seabed, the 
wavefield recorded at the receivers may be calculated as 
follows: The wavefield undergoes transformation to the 
moving inertial frame of the water, this is then upward 
continued to the depth of the receivers where it undergoes a 
second transformation into the inertial frame of the 
receivers. This sequence is depicted in the right-hand side of 
Figure 3. 
 
Figure 5 illustrates the source-water-earth system using 
ur=0, uw=500 m/s, z=500 m and v=1500 m/s, with a) being 
a trace in the earth, b) being the trace after transformation to 
the moving water reference frame, c) is the wavefield in the 
water adjacent to the streamer and d) is the wavefield 
recorded by the streamer. In this case, once more, the 
Doppler shift is absent in d) but note the displacement of 

uz v and the asymmetric dips which are the effects of the 

current. The trace used was a random band-limited signal. 
These two examples are simply intended to illustrate the 
steps. Clearly a stationary streamer or vibrator is unusual, 
however, by only having the water moving, the effects of the 
current can be shown in isolation. In both cases the 
wavefield is asymmetric and displaced. The displacement is 
proportional to water depth and current speed, and so of 
more significance in deep water with stronger currents. The 
effects will be compounded if two adjacent profiles were 
acquired in opposing current directions. 

 
Figure 5: The steps in the earth-water-receiver system: a) a trace in 
the earth, b) the trace in the water, c) the wavefield adjacent to the 
streamer, and d) the wavefield recorded by the streamer. 
 
The systematic approach described above works with time 
dependent waveforms and depth extrapolation. An 
alternative approach is to use finite difference propagation 
of space dependent waveforms extrapolating in time with a 
modification to the wave equation that has the effect of 
displacing the wavefield in the moving regions by u t . The 
advantage of such an approach is that water-layer multiples 
would be accommodated. 
 
The Doppler effect 
 
It may be shown that there is a Fourier equivalent to Galilean 
transforms (e.g., Drake & Purvis, 2014) which is sometimes 
called the shear theorem (Bracewell, 1986). Using 
Claerebout’s (1985) Fourier kernel, this says that the 
equivalent Fourier domain Galilean transform is 
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This is a shear transform mapping an event at  in O to   
in O ; an apparent frequency shift of xuk . In terms of a 

wavefield, this says, that      , ,x x xP k P k uk         

which is a wavenumber variant temporal frequency shift in 
the opposite direction of u. This is the Doppler (1842) effect 
noted by Hampson & Jakubowicz (1995). It is important to 
emphasise that u is the velocity of O w.r.t. O . The depth 
extrapolation of wavefields using a one-way wave equation 
is easily performed in the f,kx-domain by multiplication with 

 exp zik z  (Claerbout, 1985). We can write the systematic 

model in the Fourier domain symbolically as 

 | | | |
z zik z ik z

r w w e e w w sL e L RL e L S , (4) 

in which |b aL  is the Fourier Galilean transform (3) from a to 

b, R is the solid earth’s impulse response and S  is the 
source signature. It being understood that (4) should be 
evaluated right-to-left. Temporal and spatial frequencies are 
not changed by  exp zik z  and the Galilean transform does 

not change spatial frequencies. However, the earth’s 
response typically changes spatial frequencies due to 
scattering and heterogeneity. As a result, the effects of the 
system need to be split into the incident (effective source) 
side and reflected (effective receiver side). Using the 
notation of (4), the source and receiver sides are respectively 
 | | | |,   r w w e e w w sL L L L . (5) 

Evaluating (5) for the frequency entering the earth and the 
frequency recorded at the receiver respectively, we find that 
 ,e s s s r e r eu k u k       , (6) 

which has assumed that 0eu  . The subscripts indicate in 

which reference frame the variables apply. As far as the 
Doppler shift is concerned, (6) shows that the current has no 
effect. Since on the receiver side, e w rk k k   we may 

replace the second of equations (6) with  
 r e r ru k   . (7) 

Noting that 
 ,s s s r r rk p k p   , (8) 

in which /p t x    w.r.t. to the relevant inertial frame, we 
may write 
    1 , 1e s s s r e r ru p u p       . (9) 

Substitution of the first into the second shows that 
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which is the Doppler effect for a moving source and receiver 
consistent with Doppler (1842) and Hampson & Jakubowicz 
(1995). 
 
Compensating for the effects of motion 
 
There are a number of ways to compensate for the effects 

caused by the motion of the sources, receivers and the 
currents. One approach is to perform common shot 
migration taking the motion into account. In this approach, 
the migration includes the source signature in the forward 
source propagation and a 2-way wave equation (acoustic or 
elastic) that accommodates a moving reference frame. This 
has the advantage that it could also be used in least squares 
migration or full waveform inversion and in principle it 
accommodates multiples. 
 
However, since the Doppler effect is solely due to the source 
and receiver motion, those distortions may be compensated 
in exactly the manner described by Hampson & Jakubowicz 
(1995) as a first step. In doing so there remain distortions 
due to the currents, that is, the displacement and asymmetry 
in the wavefields noted in Figure 4d and Figure 5d. The 
source side is a deconvolution problem using the effective 
source wavefield (Figure 4d), while the receiver side may be 
resolved by applying the adjoint of the receiver side model, 

 H

| |
zik z

r w w eL e L . The adjoint is chosen because the inverse of 

the wave extrapolator is a growing exponential. 
 
Conclusions 
 
A theoretical model for the inclusion of marine currents into 
the motion effects on seismic data has been presented. It has 
been shown that currents distort the seismic wavefield, 
however, it has been found that they do not contribute to the 
Doppler shift, rather, they displace and shear the wavefield. 
On the source side this means that at the seabed a modified 
effective source wavefield, which is displaced and 
asymmetric, propagates into the solid earth. On the receiver 
side the received wavefield is also similarly displaced and 
asymmetric. The displacement for each side is /wu z v  where 

z  is the water depth. The apparent velocity asymmetry 
asymptotes to wv u . Two approaches have been proposed 

to compensate for these effects both using modified wave 
equations, one incorporates the corrections proposed by 
Hampson & Jakubowicz (1995). Finally, it has been 
demonstrated that this new theory is completely consistent 
with Doppler (1842) and Hampson & Jakubowicz (1995). 
 
It is worth commenting that although airguns have 
conventionally been considered to be stationary sources, the 
overwhelming drag forces from a current moves the bubbles 
laterally with the current velocity. Bubbles are moving 
sources. 
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