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ABSTRACT

The aim of quantitative interpretation (QI) is to predict 
lithology and fluid content away from the well bore. 
This process should make use of all available data, not 
well and seismic data in isolation. Geological insight 
contributes to the selection of meaningful seismic 
attributes and the derivation of valid inversion products. 
Uncertainty must be taken into account at all stages 
to permit risk assessment and foster confidence in 
the predictions. The use of the Bayesian framework 
enables prior knowledge, such as a geological model, 
to be incorporated into a probabilistic prediction, which 
captures uncertainty and quantifies risk.

Nostradamus is a fluid and lithology prediction toolkit 
that forms part of a comprehensive QI workflow. It utilises 
a Bayesian classification scheme to make quantitative 
predictions based upon inverted seismic data and 
depth-dependent, stochastic rock physics models. 
The process generates lithology and fluid probability 
volumes. All available information is combined using 
geological knowledge to create a realistic pre-drill model. 
Separately, stochastically modelled multidimensional 
crossplots, which account for the uncertainty in the rock 
and fluid properties (based on petrophysical analyses 
of well data), are used to build probability density 
functions such as acoustic impedance (AI) vs Vp/Vs 
and LambdaRho vs MuRho. These are then compared 
to crossplots of equivalent inverted data to make 
predictions and quantitatively update the geological 
model. Individual probability volumes as well as a most-
likely lithology and fluid volume are generated. This 
paper presents a case study in the Carnarvon Basin that 
successfully predicts fluids and lithologies away from 
well control in a way that effectively quantifies risk and 
reserves. Two of the three successful gas exploration 
wells were drilled close to dry holes.

KEYWORDS

Inversion, case study, quantitative interpretation, gas, 
probability, Carnarvon Basin, Mungaroo Formation.

INTRODUCTION

The Mungaroo Formation is a major exploration target 
in the Carnarvon Basin, offshore Western Australia. 
The Mungaroo Formation sandstones (referred to as 
sands hereafter) were deposited during the Late Triassic 
(Carnian-Norian) as part of an extensive fluvial system. 
This system comprises stacked braided channel belts that 
attain thicknesses of several tens of metres, typically as a 
complex network of interconnecting sandstones encased 
by overbank shales, siltstones, carbonaceous shales 
and thin coals in parts. The porosity and permeability of 
sandstones from the Mungaroo Formation can be high and 
are relatively well preserved with depth.

Tectonic activity initiated in the Early Jurassic led 
to extensional faulting and block rotation resulting in 
significant erosion and the emergence of a structural 
NNE–SSW horst and graben trend. Subsequent sea level 
rises and subsidence following the cessation of rifting along 
Australia’s northwestern margin led to the deposition of the 
Cretaceous Muderong Shale which drapes the Mungaroo 
Formation horsts and grabens. The Muderong Shale 
consists of regionally thick marine shales with excellent 
sealing capabilities. In this study area the Muderong Shale 
overlies the subcropping Mungaroo Formation at a major 
unconformity surface. 

Gas migration into the Mungaroo Formation is believed 
to have occurred through a combination of selective fault 
and sand channel conduits, however, not all apparently 
sealed sandstone channels were charged, possibly 
because of complete isolation from the migration fairway. 
Gas saturation in these sands is usually associated with 
high seismic amplitudes, however, ambiguity exists due to 
high seismic amplitudes associated with high porosity brine 
sands and also carbonaceous shales. This study outlines 
the comprehensive quantitative interpretation (QI) workflow 
that was successful at identifying the gas bearing sands.

Prior to the QI study four dry holes had been drilled in 
the block. The initial QI study was based on these four dry 
holes. Three significant gas discoveries have now been 
drilled. The discovery wells are close to and, in one case, 
down dip from the previously drilled dry holes. The study 
has been updated after each new well.
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The aim of the study was to predict lithology and fluid 
content away from the well bore, and in particular to identify 
gas sands. The process made use of all available data, not 
just well and seismic data in isolation. Geological insight 
contributed to the selection of meaningful seismic attributes 
and the derivation of valid inversion products. Uncertainty 
modelling was taken into account to permit risk assessment 
and foster confidence in the predictions. The use of the 
Bayesian framework enabled prior knowledge such as a 
geological model to be incorporated into a probabilistic 
prediction, which captured uncertainty and quantified risk.

Nostradamus is a fluid and lithology prediction toolkit. 
It utilises a Bayesian classification scheme to make 
quantitative predictions based on inverted seismic data and 
depth-dependent, stochastic rock physics modelling.

Stochastically modelled multidimensional crossplots, 
which account for uncertainty in rock and fluid properties 
(based on petrophysical analyses of well data), were used 
to build 2D probability density functions (AI vs Vp/Vs). 
These were compared to crossplots of equivalent inverted 
seismic data to make predictions and quantitatively update 
the geological model. Individual probability volumes as well 
as a most-likely lithology and fluid volume were generated.

The study incorporated petrophysics, rock physics, 
geology, geophysics and uncertainty to successfully predict 
fluids and lithologies away from well control in a way that 
effectively assists the determination of risk and reserves.

BACKGROUND

QI is concerned with making lithology and fluid predictions 
based on a limited amount of known data (the wells) 
and widespread observed data (the seismic data). Prior 
geological knowledge needs to be used to set the context 
for the analysis. Figure 1 shows the QI workflow used for 
this project.

QI relies on the seismic observations being a direct 
result of the impedance contrasts of the rock strata being 

studied. That is, the relative seismic amplitudes need to be 
preserved. Adequate preparation of seismic data for QI is 
imperative, and in our observation this is often done poorly. 
On this occasion good quality angle stacks were available, 
therefore the seismic data preparation was confined to:

geared to both enhance frequencies generally, and 
also to help balance the frequency content of the 
angle stacks; and,

each event is at the same time on each stack. This final 
alignment process applies a residual fine tuning.

PREPARATION OF THE ROCK PHYSICS MODEL

The impedance of rocks (and hence the impedance 
contrast of different rocks) is due to their elastic properties. 
Critical geologic factors that control elastic properties can 
be related to both depositional environment and burial 
history (Avseth et al, 2003). Quantifying depth dependence 
imposes a meaningful geologic trend which constrains 
uncertainty and the expected range of seismic responses.

Therefore, a rock physics model was needed which 
described the elastic behaviour of all the possible lithology 
and fluid combinations that were expected (as interpreted in 
the wells as significant for the delineation of hydrocarbons) 
as a function of depth.

The starting point was a detailed petrophysical 
interpretation following on from the quality control (QC) and 
preparation, including environmental corrections, of the 
available well log data. Synthetic shear logs were generated 
for two of the wells using petrophysical trend analysis.

An end member rock physics model was built around a 
petrophysical analysis. An end member is defined as the 
cleanest example of a lithology present and is indirectly 
based on mineralogy (Duncan et al, 2004). Once the elastic 
properties of the end members are known, the elastic 
behaviour of any rock composed of different proportions of 
these end members—any Vsand with any fluid saturation—
can be determined. Figure 2 shows an example of the end 
member interpretation. The straw coloured picks are the 
end member sands and the blue picks are the Mungaroo 
Shale. Before being used, each pick is upscaled and 
averaged to become one point on the crossplots shown in 
Figures 3 and 4.

Depth-dependent end member elastic lithology and fluid 
property trends, based on available log data, were derived 
along with their uncertainties. These are shown in Figures 3 
and 4. The solid fitted line is the trend, while the dotted line 
on either side captures two standard deviations of scatter. 
Quantification of the inherent scatter in end member rock 
properties was essential to understand the range of seismic 
responses and associated inversion derivatives that were 
observed.

It is worth comparing the TVD below mud line (TVDBML) 
vs Vp trends for the Mungaroo shale and the sand. At about 
a depth labelled Y metres the trends cross over. What this Figure 1. The comprehensive QI workflow used in this study.
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Figure 2. Example well from the study illustrating the end member picks. Sands are straw coloured and the shales are aqua blue.

Figure 3. Shale trends for the two dominant shales. Each picked interval from the end member interpretation is upscaled and then 
plotted as a single point on these cross plots. y indicates the pivot point above which shales are softer than sands and below which 
shales are harder than sands.

Mungaroo Fm 
gas sands

Mungaroo shales

TV
DB

M
L 

(m
)

Vs
 (m

/s
)

De
ns

ity
 (g

/c
m

3 )

Muderong shale

Mungaroo shale

Vp (m/s)

Gas

Brine



4

M.G. Lamont, T.A. Thompson and C. Bevilacqua

means is that above Y metres the shale is softer than the 
sand. Below Y metres the shale is harder than the sand 
(Figs 3 and 4). This results in completely different AVO 
behaviour above Y metres to below it. In fact these trends 
describe constantly varying AVO behaviour. Therefore, it was 
imperative to have a depth-based rock physics model.

The analysis determined that the necessary end members 
in this case were:

 
— Quartz rich sand; 
— The Muderong and Mungeroo shales; and, 
— Coal/Carbonaceous shale.

 
— Gas; and, 
— Brine.

To capture the expected range of rock properties and 
hence the expected range of seismic responses, for all 
candidate lithology-fluid combinations over the depth range 
of interest, stochastic forward modelling was performed. 
Gassmann substitution was an integral part of the modelling. 
Gas saturations used for modelling were 0% (brine case) 
and 75+-5% (high saturation gas case). A low saturation 
gas was not considered in the final analysis due to the poor 
discrimination from high saturation gas and a low geological 
risk for the presence of low saturation gas. For this study 

10,000 forward models were produced for every depth step 
of 4 m. The parameters for each model were determined 
by the Monte Carlo sampling of the multidimensional rock 
physics model. The rock physics model is comprised of the 
trends that are displayed in the four separate cross plots, 
however they should not be sampled from one trend at a 
time because they are, in fact, coupled; they need to be 
thought of as one space and a single sample drawn from 
this multidimensional space to get the correct distribution 
of properties.

The varying AVO behaviour with depth is further illustrated 
by the stochastic modelling results shown in Figure 5. 
Each point on these plots represents one of the 10,000 
models. It is clearly evident that over a 600 m depth interval 
the clusters have shifted both absolutely and relative to 
one another. The ellipses on these plots represent the 
two standard deviation contour of the probability density 
functions (PDFs). That is, these figures are showing both 
the stochastic modelling results and the resulting PDFs.

A standard workflow used in many QI projects may, if 
necessary, begin by using Gassmann substitution to alter 
the well data so that the sands represent the all brine case. 
In a similar way, the logs may subsequently be altered to 
represent a particular hydrocarbon case. These logs can 
then be cross plotted and the different lithologies and 
fluids identified. The cross plot can be partitioned into 

Figure 4. Sand trends for the area. As for the shales, each point represents an interpreted, upscaled end member interval.
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different lithology/fluid combinations and these cut offs 
used to produce lithology/fluid prediction volumes. At times 
gradations are added stepping away from the centre of the 
partitions or away from theoretical trends and the resulting 
volumes are called probability volumes, although they are 
not technically probability volumes.

Consider this case study where the relative behaviour 
of the rocks is varying rapidly with depth: this standard 
workflow will base the partitioning of this space and the 
subsequent lithology and fluid volumes on the location of 
the sands and shales in the available wells. If the worker 
is lucky the lithologies in the available wells are adequately 
sampled through their depths of interest, and hence an 
averaging of the modelling results over the depth interval 
results. This situation is reasonably well illustrated in Figure 
6. Here the modelling results represent a 600 m depth 
interval. Consider the point at the Vp/Vs ratio of 1.65 with 
a AI of 8,500. In the X+600 m crossplot in Figure 5, this 
point clearly represents a gas sand. In fact the Bayesian 
update will give this point a probability of being a gas sand 
in the 90s. Now consider this same point in Figure 6. This 
point falls well within the ellipses of gas, brine and shale. 
Probability volumes produced from this modelling will 
assign roughly similar probabilities to all three when in fact 
it is a gas sand. Thus it is imperative to consider depth 
dependency of the impedance and velocity responses.

A fundamental output of the modelling, based on the 
trends and their uncertainties, was depth dependent 
multivariate rock property PDFs for each lithology/fluid 
class. The stochastic modelling also provided the following 
information:

sands;

optimal fluid and lithology discrimination; and,

gas bearing sands.

Figure 7 shows the relationship of porosity with depth as 
well as the changing resolution with depth. It is apparent 
that at shallower depths fluids can be easily discriminated 
(brine sand vs gas sand) and lithologies less so (shale vs 
brine sand).

SPARSE SPIKE SIMULTANEOUS INVERSION

A multi offset, Bayesian wavelet derivation program was 
used to estimate the wavelet and its uncertainty (seismic 
noise level). This was a strong test of the amplitude fidelity 
of the seismic data. It featured a fully integrated Bayesian 
approach to the coupled uncertainties in wavelet estimation, 
a process which is critical in an inversion study (Gunning 
and Glinsky, 2006).

The wavelet extraction provided maximum likelihood 
estimates of the wavelet, as well as multiple realisations 
from the posteriore—the final derived distribution(s) after 

Figure 5. Stochastic forward modelling results. The four major fluid/
lithology combinations are represented here. Ellipses represent the 
two standard deviation contours around the probability density 
functions. Notice that the 600 m depth step has resulted in the 
entire four clusters being grossly translocated as well as the shale 
and brine clusters swapping relative positions.

Figure 6. Stochastic forward modelling from the depths of X to X + 
600 m combined. Consider the point at the position AI=8,500 and 
Vp/Vs=1.65. On this plot the probability of it being hydrocarbon, 
brine or shale is roughly equal. In Figure 5 the same point has an 
overwhelming probability of being hydrocarbon.
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all the observed data and prior information has been 
considered—highlighting the uncertainly in the wavelet 
scaling and extent. The final wavelets are shown in Figure 
8. The wavelets were extracted from all wells and all angles 
simultaneously and the final wavelet is approximately zero 
phase.

A geostatistical methodology was used to build the low 
frequency model. It utilised all available information (wells, 
horizons, trends and velocity field) producing a stable model 
away from well control while providing an exact match 
at the well locations. Through the initial and subsequent 
updating of the project, an appreciation was gained as to 
the importance of the low frequency model in obtaining 
accurate reservoir predictions away from well control. In this 
case it was a difficult procedure due to the lack of conformity 
of the geology. That is, the volume doesn’t easily break into 
layers, and therefore modelling extensive horizons at target 
level was not possible. Understanding the uncertainty 
in the model was essential and is an ongoing part of the 
investigation.

A sparse spike inversion algorithm, SPIKE®, was used 
for the volume inversion. It is an AVO inversion which in 
essence inverts for intercept, gradient and curvature (Shuey, 

1985) in order to determine P impedance, S impedance 
and density. Although the inversion can take any number of 
input stacks, three were used on this occasion. From these 
fundamental outputs, Vp/Vs, LambdaRho and MuRho 
were also calculated. LambdaRho and MuRho are rock 
property attributes that characterise the incompressibility 
and rigidity of a rock respectively. These quantities can be 
obtained from the common equations for Vp and Vs, which 
are a function of Lame’s parameters (lambda and mu), the 
modulus of rigidity and density (rho).

Figure 9 shows the detuning power of the inversion as 
well as the resolution limits. This wedge modelling is based 
on the wavelets and parameters from this study and hence 
is an accurate representation of the resolution limits.

Figure 10 shows the synthetic to seismic ties and the 
relative P and S impedance match to the well data. A good 
match was obtained through the zone of interest. Figure 11 
shows the absolute inversion tie at one of the wells, with a 
good match obtained.

DEPTH CONVERSION

The rock physics model was depth based and the 
resulting probability volumes were needed in depth so as to 
be easily used for the planning of new wells and as input to 

Figure 7. A plot of AI vs Vp/Vs for varying depths and porosities. Ellipses are illustrative of ~1 standard deviation of scatter. Ellipse rotation 
is not accounted for in this figure. Fluid discrimination is good at all depth levels, however does decrease with increasing depth. Fluid and 
lithology discrimination is maximised using both P and S attributes. Lithology discrimination increases with depth.
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Figure 8. Final wavelets (multi-well extraction). The bunching of the wavelet realisations illicits confidence in the result.

Figure 9. This figure shows the resolution limit of the QI flow. A wedge model, populated with the rock properties from the project, 
was used as a basis for the generation of near, mid and far seismic stacks. The simultaneous inversion was run on these stacks 
followed by the lithology and fluid classification procedure. It is clear that the procedure correctly predicts sands down to around 10 m 
thickness—well below the seismic tuning thickness.

FINAL WAVELETS MID STACK WAVELET REALISATION



8

M.G. Lamont, T.A. Thompson and C. Bevilacqua

the reservoir model building phase. Therefore it was logical 
to take the inverted seismic products to depth before the 
analysis stages. The required depth was depth calibrated to 
well control as opposed to seismic depth.

The methodology was to take the available time/depth 
pairs and, using the initial velocity model, convert the 
times to depth. The differences in the depths at each point 
can then be used to calculate velocity updates at these 
times. These velocity updates are built into a 3D volume 
using geophysically/geologically constrained geostatistics. 
The time depth points were honoured while a stable and 
geologically consistent velocity field away from the control 
was produced. Finally, the update is added to the initial 
velocity model. This velocity model was then used to 
depth convert all of the inversion products, which was 
subsequently tied to the wells.

LITHOLOGY AND FLUID PREDICTION

Figure 12 is a plot made before the drilling of any of the 
discovery wells. It combines rock property volumes from 
the inverted seismic data with the ellipses representing 
the rock property modelling results. Firstly, an anomaly 
was identified. The points from each of the rock property 
volumes in the region of the anomaly are the samples in 
the cross plot. Then three polygons are drawn. The first 
represents a potential sealing shale, the second represents 
a potential gas sand and the third a potential down dip 
brine sand. The points in each polygon are then highlighted 
on the crossplot and color coded accordingly. Next, the 
ellipses representing the PDFs at the mid-point depth of 
the corresponding polygon are superimposed over the top 
of the plot. They show a remarkable alignment between 
the model results and cross plotted rock property volumes. 
This engendered confidence in the inversion and modelling 
procedures. The next step was a Bayesian update.

Lithology and fluid prediction was based on a Bayesian 
supervised classification scheme called Nostradamus. It 
brought together prior information, including stochastic 
modelling, inverted data, and interpretation to produce 
lithology and fluid probability volumes through the zone of 
interest.

At the core of the scheme are multivariate PDFs, one for 
each depth level of interest. Each lithology/fluid combination 
was represented in the PDFs and hence resulted in an 
associated probability volume being produced. In addition, 
a most likely lithology/fluid volume is produced.

Unlike Avseth (2003) and Anderson (2003) who use a 
Bayesian approach based on relative interface properties 
(AVO), this method utilises absolute rock properties to 
define the possibilities of an inversion resolvable layer. This 
volume based prediction limits the possibilities to individual 
layers rather than interfaces between two layers.

Figure 13 shows a slice through the resulting gas 
probability volume with the subsequent discovery well Figure 11. Acoustic impedance tie at one of the wells.

Figure 10. Relative impedance ties at one of the discovery wells.
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locations and the original dry holes. It starts to reveal the 
nature of the high gas probability sands as well as showing 
how close two of the discovery wells are to the original dry 
holes.

Figure 14 shows the first discovery well. It was drilled 
close to and down dip from an earlier dry hole. The new 
well encountered gas sands as predicted. The location of 
the dry hole comes out as a ~10% chance of gas in the 
probability volume. Figure 15 shows the gas probability 
volume in 3D in the same area as Figure 14. It reveals the 
channelised geometry of the gas sands as highlighted by 
the gas probability volume.

Figure 16 shows the second discovery well. It was drilled 
at 67 degrees to intercept multiple high gas probability 
bodies. Again the gas came in as predicted.

Figure 17 is the third and, at the time of writing, most recent 
discovery. This well is also close to a previously drilled dry well.

The gas probability volume has now been used as the 
basis for a reservoir model.

CONCLUSIONS

Three significant gas discoveries have been made in an 
exploration permit following a comprehensive QI study. Two 
of these wells were close to dry holes. In addition, one of 
the discovery wells was down dip from an earlier dry hole.

The workflow described here assimilates geology, 
geophysics, petrophysics, rock physics and uncertainty. 
Simultaneous inversion products were compared with 
multivariate rock property PDFs to make probabilistic, 
volume-based fluid and lithology predictions using a 
Bayesian framework.

A depth dependent rock physics model is essential. The 
sparse spike inversion was able to detune the seismic data 
to a large extent.

Probability volumes were built using a Bayesian 
classification scheme utilising rigorously derived, depth 
dependent, PDFs. They were not derived from empirical or 
arbitrary lines drawn on crossplots.

Although this workflow involves considerably more work 
than the standard approach, it is scientifically justifiable and 
has delivered remarkable success.
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Figure 13. Locations with high gas probability in a 200 ms 
window below Top Mungaroo. The map shows previous dry 
holes and the three new discoveries.
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Dry hole

Discovery 2

Discovery 3
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Figure 12. Comparison of rock properties from the seismic inversion with the PDFs (from the appropriate depth) produced from the rock 
physics model.
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Figure 15. The gas probability volume shows the complex 
gas sand geometries around the first discovery well. 
Original well failed to intersect a gas reservoir.

Figure 16. A cross section through the gas probability volume at the 
second discovery well.

Figure 14. Gas probability data provided confidence to drill downdip of a 12 m brine sand resulting in the first discovery.

FIRST DISCOVERY WELL EXISTING WELL

SECOND DISCOVERY WELL
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Figure 17. Third well, third discovery. Arbline showing discovery well position along with previous dry hole.
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