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Summary 

 

Many implementations of full waveform inversion (FWI) 

use an L2 norm to quantify differences between the 

modelled and observed data. Unfortunately, this approach is 

prone to cycle skipping when the supplied velocity is too far 

from the truth. Starting FWI at lower frequencies widens the 

desired basin of attraction yielding convergence towards a 

more correct solution. This, however, relies on the 

availability of good low frequency signal in the recorded 

seismic data. An alternative approach is to consider a more 

convex objective function, such as the Kantorovich-

Rubinstein (KR) distance found in optimal transport 

problems. Determining the KR distance in multi-

dimensional (multi-trace) optimal transport is tractable, but 

computationally expensive for many iterations and so we 

demonstrate an efficient implementation using a 

preconditioned LSQR approach together with the proximal 

splitting simultaneous-direction method of multipliers 

(SDMM) optimization technique. We compare the KR and 

L2 norms on data from the North-West Shelf of Australia. 

 

Introduction 

 

FWI seeks to minimize differences between the observed 

data and data modelled using the wave equation with initial 

estimates of subsurface models (Tarantola, 1984; Plessix, 

2009). In doing so, the model(s) (e.g., P-velocity) are 

iteratively updated to explain these differences, increasing 

model resolution in the process. The mismatch between the 

modelled and observed data is typically quantified using an 

L2 norm of their difference. Minimizing the L2 norm is often 

achieved through local optimization quasi-Newton methods 

(Nocedal and Wright, 2006; McLeman et al., 2021), which 

use estimates of the inverse Hessian operator. 

 

The L2 norm is computed sample by sample and hence is not 

well suited to measure time-shifts between the modelled and 

observed data due to their oscillatory nature. It is highly non-

convex and so for large time-shifts, more than half a period, 

local optimization techniques will tend to converge to a local 

minimum, yielding an incorrect solution (Virieux and 

Operto, 2009). This is the notorious “cycle skipping” 

problem. The L2 norm is also highly sensitive to amplitude 

differences, which can occur from acoustic modelling 

inaccurately capturing the elastic-like dynamics of the 

subsurface. A common strategy to mitigate L2-norm issues 

is to initially consider only the amplitude-normalized diving 

waves and start FWI at low frequencies, thus widening the 

basin of attraction of the global minimum. With this first 

updated model, the inversion frequency can be increased and 

FWI run again (Operto et al., 2004). This workflow repeats 

until a desired frequency is reached. The process is time-

consuming and relies on the availability of good low-

frequency signal in the observed data. 

 

Several data-domain methods with more convex objective 

functions were developed as an alternative. These prioritize 

travel-time differences between the modelled and observed 

data, rather than all aspects of the residual. The wave-

equation travel-time inversion approach (Luo and Schuster, 

1991) estimates time-shifts from the cross-correlation of the 

modelled and observed data but resulting model updates 

were typically lower resolution. Subsequent developments 

utilized an objective function based on a deconvolution 

approach (Luo and Sava, 2011; Warner and Guasch, 2016) 

which alleviated the assumption inherent in the cross-

correlation approach that the seismic source was impulsive. 

 

Mitigating cycle skipping in FWI with optimal transport 

(OT) was first discussed by Engquist and Froese (2014). 

Métivier et al. (2016a, 2016b, 2016c) further developed this 

using the dual formulation of the 1-Wasserstein distance, 

where the distance metric is given by the Kantorovich-

Rubinstein (KR) norm (Villani, 2008).  Unlike using a 2-

Wasserstein distance (Wang & Wang, 2019), the KR norm 

is computationally tractable when considering data-domain 

multi-dimensional correlations in large-scale applications. 

The KR norm also does not require any data transformations 

to, for example, ensure “mass” positivity and conservation. 

Compared to the L2 norm, the KR norm has demonstrated 

improved convexity. Recent applications of the KR norm in 

FWI have shown success at an industrial scale (Messud and 

Sedova, 2019; Messud et al., 2021). 

 

In this paper, we further demonstrate the application of 

multi-dimensional optimal transport in FWI using the KR 

norm. Its traditional computation with SDMM has been 

accelerated using the LSQR algorithm (Paige and Saunders, 

1982a, 1982b) combined with a novel preconditioner. The 

results of this are shown on marine data from the North West 

Shelf of Australia and compared with a standard L2 norm. 

 

Method 

 

We begin with the 1-Wasserstein distance recast as a dual 

problem with a bounding constraint, yielding the KR norm 

(Messud and Sedova, 2019), 

 

𝑊1(𝑑𝑚𝑜𝑑 , 𝑑𝑜𝑏𝑠) = 

max
𝜑

∫ ∫ 𝜑(𝑥𝑖𝑙 , 𝑡)(𝑑𝑚𝑜𝑑(𝑥𝑖𝑙 , 𝑡)
𝑥𝑖𝑙𝑡

− 𝑑𝑜𝑏𝑠(𝑥𝑖𝑙 , 𝑡))𝑑𝑥𝑖𝑙𝑑𝑡. 

 

 

(1) 
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Multi-dimensional optimal transport in FWI 

Subject to the constraints of, 

 

|𝜑(𝑥𝑖𝑙 , 𝑡)  −  𝜑(𝑥𝑖𝑙
′ , 𝑡′)| ≤  𝛾(𝑥𝑖𝑙 , 𝑡, 𝑥𝑖𝑙

′ , 𝑡′) (2) 

|𝜑(𝑥𝑖𝑙 , 𝑡)| ≤  𝜆 

 

(3) 

In equation (1), dmod is the data synthesized through wave 

equation modelling, dobs is the recorded data, xil is a position 

along an inline (or along a cable in the marine towed 

streamer case) and t is time. Equation (2) is the 1-Lipschitz 

constraint which limits changes in φ(xil, t) to vary slower than 

γ(xil, t, xil’, t’). Equation (3) represents a maximum bound on 

the amplitude of φ(xil, t), this constraint is essential for FWI 

applications since, in general, mass is not conserved and in 

such cases equation (1) will diverge. Equations (1)-(3) are a 

linear programming problem, but equation (2) represents a 

very large number of constraints. This can be avoided by 

choosing the metric γ(xil, t, xil’, t’) to take the form of local 

constraints (Métivier et al., 2016b), 

 

𝛾(𝑥𝑖𝑙 , 𝑡, 𝑥𝑖𝑙
′ , 𝑡′) =  

1

𝜎𝑖𝑙
(𝑣|𝑡𝑘+1  −  𝑡𝑘|  +  |𝑥𝑖𝑙

𝑝+1
 −  𝑥𝑖𝑙

𝑝
|) 

 

(4) 

 

Where v is the velocity of the direction with the highest inter-

trace correlations, σil is the variance along the inline, and k 

and p are sample indices in time and space respectively. 

 

This linear programming problem can be discretized and 

iteratively solved using the SDMM optimization technique 

(Métivier et al, 2016b; Combettes and Pesquet, 2011). An 

expensive part of this optimizer involves solving a matrix 

inverse problem to determine the updated values of φ(xil, t) 

from the linear constraints. This is described by the solution 

of the normal equations, 

 

𝜑𝑛  =  (𝐼 +  𝐿𝑇𝐿)−1[(𝑦1
𝑛  −  𝑧1

𝑛)  +  𝐿𝑇(𝑦2
𝑛  

−  𝑧2
𝑛)] 

 

(5) 

Where I is the identity matrix, L is the rectangular matrix of 

linear constraints, y and z are vectors generated during 

SDMM and n is the SDMM iteration number. The matrix (I 

+ LTL)-1 is a large sparse matrix, too large to fit in memory 

for realistic shot gather sizes and therefore spectral 

decomposition methods are appealing. These, however, can 

still be computationally expensive in comparison to solving 

equation (5) in a preconditioned iterative fashion. We 

therefore recast equation (5) into the following form, 

 

𝐽 =  𝑚𝑖𝑛
𝑥

||(𝐼 +  𝐿)𝑃𝑥𝑛  −  (𝑦𝑛  −  𝑧𝑛)||2 (6) 

 

Where P is a linear preconditioning operator and φn = Pxn. 

We can construct P to dramatically reduce the number of 

iterations required to solve equation (6). The action of (I + 

L) is known a priori, so an estimate of its point spread 

function (PSF) can be built by convolving (I + LTL) with a 

unit spike. The damped inverse and square root of the PSF 

amplitude spectrum gives our preconditioner P. The 

advantage of this is that P represents a filter, and its 

application is efficient since it is simply a convolution with 

xn. We solve equation (6) using a preconditioned LSQR 

optimization scheme. P can be computed once, upfront, and 

then re-used for every LSQR, SDMM and FWI iteration. 

 

A further efficiency can be achieved by recognizing that the 

adjoint source is given by, 

 

𝜕𝑊1(𝑑𝑚𝑜𝑑 , 𝑑𝑜𝑏𝑠)

𝜕𝑑𝑚𝑜𝑑
 =  𝜑𝑚𝑎𝑥(𝑥𝑖𝑙 , 𝑡) 

+ ∫ ∫
𝜕𝜑𝑚𝑎𝑥(𝑥𝑖𝑙

′ , 𝑡′)

𝜕𝑑𝑚𝑜𝑑(𝑥𝑖𝑙 , 𝑡)
(𝑑𝑚𝑜𝑑(𝑥𝑖𝑙

′ , 𝑡′)

− 𝑑𝑜𝑏𝑠(𝑥𝑖𝑙
′ , 𝑡′))𝑑𝑥𝑖𝑙

′ 𝑑𝑡′ 

 

 

 

(7) 

 

The second term in equation (7) can be considered negligible 

(Messud et al., 2021). The adjoint source is therefore just the 

φmax(xil, t) already computed in equation (1) when 

determining the KR objective function value. 

 

Results 

 

Figure 1 shows a 6 Hz FWI synthetic experiment which 

compares the L2 and KR objective functions when an initial 

velocity model is perturbed via scaling by a constant ratio. 

 

 

Figure 1: A comparison between the L2 objective function (blue) 

and the KR objective function (red). 

 

The L2 objective function is non-convex, demonstrating 

multiple minima. In this scenario, a starting velocity error of 

+/-8% or more would yield convergence to an incorrect 

solution, as the downhill direction moves away from the 

global minimum. The inversion has cycle skipped. The KR 

objective function, however, is convex and even starting 

with a velocity error of +/-15%, FWI will iterate towards the 

correct solution. The widening of the global minimum basin 
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Multi-dimensional optimal transport in FWI 

of attraction highlights the potential of this technique to 

make FWI more robust against cycle skipping. 

 

We tested the KR objective function on a triple-source, 12-

streamer dataset from the Australian North West Shelf. The 

initial model was generated from a single well check-shot 

survey which was then smoothed and extrapolated following 

the water-bottom horizon. FWI was then started at a 

frequency of 6 Hz, where only the diving waves were used 

to update the velocity model in a single parameter inversion. 

The water-bottom in this test area varied from 130 m – 415 

m depth, with diving waves reaching a maximum 

penetration of 2 km. Starting FWI at this frequency with this 

initial model was known to cause cycle skipping in regions 

of the model when using an L2 objective function, making 

this a suitable test for the KR approach. This also determines 

the possibility of reducing time spent building up the low 

frequencies in conventional FWI workflows or having to 

start with a velocity derived from an RMO tomography 

update. For all results shown, 10 FWI iterations were used. 

In the KR FWI case, 40 SDMM iterations were used to 

compute the KR norm, each using approximately four 

preconditioned LSQR iterations. 

 

The initial model, L2-updated model and KR-updated model 

overlain on their respective Kirchhoff prestack depth 

migration (preSDM) stacks are shown in Figure 2. L2 FWI 

has demonstrated some improvement in the shallow-water 

region but has also introduced some local undulations which 

are incorrect. The deeper-water region shows a degradation 

from the initial model, with non-geophysical velocity trends. 

This is not unexpected, as the well check-shot survey from 

which the initial model was derived was located in the 

shallow-water region ~1.2 km out of the displayed plane of 

section. This results in the deeper-water region having an 

initial model which is relatively further from the truth than 

the shallower water-bottom section. The KR FWI result 

demonstrates a dramatic improvement in imaging 

throughout the section, particularly in the deep-water region. 

The improvement in objective function convexity brought 

by the KR norm has allowed FWI to lock onto the correct 

solution even when starting very far from the truth. 

 

Figures 3a), b), & c) show image gathers through the deeper-

water section migrated with the initial, L2 FWI and KR FWI 

velocity models respectively. Figures 3d), e), & f) show the 

same but through a shallower water-bottom section. As is 

hinted at by the stack results, the image gathers show 

considerable move-out through the deeper water-bottom 

region in both the initial model and the L2 FWI derived 

model. On the other hand, KR FWI has slowed the velocity 

down in this region considerably which was needed to bring 

the inverted velocity model closer to what is required to 

flatten the image gathers. The improvement in gather 

flatness in the shallower water-bottom region is largely 

comparable, with local exceptions, between the L2 and KR 

FWI approaches. Both are considerable improvements over 

the initial model. 

 

 

Figure 2: Kirchhoff preSDM stacks with their respective velocity 

models overlain where a) is the initial model, b) L2 FWI output, and 
c) KR FWI output. 

 

Figure 4a) shows a comparison between the check-shot 

velocity (black), the initial velocity model (red) and the KR 

FWI result (cyan). The KR FWI updated velocity shows a 

good match with the check-shot profile, where additional 

resolution will be added upon increasing the FWI frequency. 

Figures 4b), c) & d) show the 1D cross-correlation between 

the observed data and data modelled using the initial 

velocity, L2 FWI velocity, and KR FWI velocity 

c) 

1
2

0
 m

 

1.2 km 

b) 

a) 
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Multi-dimensional optimal transport in FWI 

respectively. Using the initial model, time-shifts between the 

modelled and observed data are apparent and increase with 

increasing offset. L2 FWI attempts to reduce this, but the 

obvious cycle skip has prevented it from obtaining the 

correct solution. The KR FWI demonstrates a flat, near-

symmetric cross-correlation indicating that the kinematics of 

the modelled and observed data match well at all offsets. 

 

 

Figure 3: Kirchhoff preSDM image gathers migrated with a) initial 

model, b) L2 FWI, and c) KR FWI through the deeper water-bottom 

region, d), e) and f) are the same but through the shallower water-
bottom section. 

 

 

Figure 4: a) Well profile comparing the check-shot (black), initial 

model (red) and OT FWI result (cyan). Cross-correlations between 
the modelled and observed data are shown for the b) initial model, 

c) L2 FWI, and d) KR FWI. The cross-correlogram values have been 

clipped to show only positive values 

 

Conclusions 

 

In this paper we have described the application of multi-

dimensional optimal transport for mitigating cycle skipping 

in FWI. This discussion highlighted techniques that can be 

used to improve the efficiency of computing the KR norm, 

which forms a more convex objective function in 

comparison to the standard L2 norm approach. These novel 

techniques were applied to a real dataset from the Australian 

NW continental shelf. Despite starting from a smoothed 1D 

velocity profile derived from a single well check-shot 

survey, the KR FWI approach successfully converged 

towards a more correct solution. The resulting velocity 

model demonstrated a substantial improvement in imaging 

compared to the L2 FWI case. This highlights the possibility 

of starting FWI at higher inversion frequencies even with 

less accurate starting models. Thus, also reducing the 

number of FWI frequency steps that would traditionally be 

used in a standard FWI workflow and reducing the reliance 

on good recorded low frequencies. 
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