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Summary 

 

Conventional Full Waveform Inversion (FWI) produces 

high-resolution model updates from diving wave energy in 

recorded seismic data. However, the penetration depth of 

refraction energy is limited by the maximum recorded offset 

and the Earth’s velocity field, so we rely on reflected energy 

to update the deeper parts of the model. The inclusion of 

reflections in FWI requires special care due to the relatively 

weak amplitude of the “rabbit ear” tomographic term. We 

propose a novel reflection FWI (R-FWI) simultaneous 

inversion for velocity and derivative quantities which may 

include properties related to amplitude variation with angle 

of incidence (AVA). Such multi-parameter inversions face 

difficulties with parameter scaling, Hessian estimation and 

slow convergence rates. Therefore, we also propose an 

efficient adaptive gradient extension to a conventional quasi-

Newton optimization scheme to complement our multi-

parameter approach. We demonstrate these new approaches 

on data from the North-West shelf of Australia. 

 

Introduction 

 

FWI has become a common method for determining a range 

of different subsurface parameters from seismic data, e.g., 

velocity, anisotropy and Q-absorption. Its ability to produce 

high-resolution model updates and fill the resolution gap 

between traditional tomographic inversion and the migration 

reflectivity makes it an essential tool in the model building 

workflow. Conventionally, FWI relies on the difference 

between the recorded and modelled diving waves to drive a 

velocity update, which yields the classic “banana” shaped 

gradient. However, the penetration depth of diving waves is 

typically only 1/3 to 1/5 of the maximum offset (Zhou et al., 

2015), which is inadequate for deeper targets of interest. One 

solution is to acquire longer offsets; however, this comes 

with attendant cost and operational drawbacks. R-FWI offers 

a solution to this penetration problem, but requires special 

care during implementation (Yao et al., 2020). 

 

Modelling data with a smooth model produces only 

transmitted waves. If the input data to FWI contains only 

reflections, the initial gradient will contain only the higher-

wavenumber ‘events’ (the “migration” term) due to the 

cross-correlation imaging condition. These events will have 

amplitude proportional to reflection coefficient, R. 

Subsequent iterations will scatter the wavefield from these 

events and additionally produce the lower wavenumber 

tomographic updates (the “rabbit ears” term) responsible for 

the kinematics with amplitude of order R2. The inversion will 

therefore preferentially invert for the stronger migration 

term. Meaningful tomographic updates can be achieved via 

simultaneous or cascaded multi-parameter inversion such as 

velocity and a perturbed parameter (Xu et al., 2012), 

velocity-reflectivity (Yao et al., 2014) or velocity-density 

(Wang et al., 2015). Their gradients are decomposed so that 

the migration term is placed in reflectivity or density and the 

tomographic term into velocity. These parameterizations, 

however, face difficulties. The reflectivity or perturbation 

approach typically involves the Born approximation 

(linearization) of the scattering problem; thus, the input data 

should be free of multiples and ghosts. This data is not likely 

to be available at the beginning of a project. Alternatively, a 

velocity-density formulation where only the migration term 

is kept in density means it acts only to scatter the wavefield 

rather than contain useful lower frequency information. 

 

It is well known that there is crosstalk between parameters 

in multi-parameter inversion if the quantities are coupled 

(Operto et al., 2013). There is also slow convergence of 

weaker parameters when parameters have very different 

scales. These issues cannot be overcome using steepest 

descent, even with enhancements from machine learning, 

such as “momentum” or adaptive gradient (AdaGrad) 

(Duchi et al., 2011) schemes. The absence of curvature 

information, that higher order methods could provide, 

renders these approaches undesirable for complex non-linear 

problems. Higher order quasi-Newton methods which have 

realistic memory footprints, such as L-BFGS, are viable 

because they use diagonal plus low-rank approximations to 

the Hessian. Although this improves convergence compared 

to steepest descent, it still fails to adequately decouple model 

parameters or address parameter scaling issues. 

 

We demonstrate a new multi-scattering reflection FWI that 

simultaneously solves for velocity and vector derivative 

quantities which can have AVA-like properties. The 

convergence rate of this multi-parameter inversion is 

accelerated and parameter scaling issues addressed using a 

quasi-Newton adaptive gradient scheme that is equally well 

suited to single parameter problems. 

 

Reflection FWI with an augmented wave equation 

 

We begin with the variable density acoustic wave equation, 

which is given by, 

1

𝑐2

𝜕2𝑢

𝜕2𝑡
 −  𝜌∇ ∙ (

1

𝜌
∇𝑢) =  𝜌𝑠𝛿(𝒙 − 𝒙𝟎) (1) 

 

where c is the P-wave velocity, ρ is density, s is the source 

term, δ acts at the source position and u is the forward 
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R-FWI with augmented wave equation 

pressure wavefield. Equation (1) can be re-written 

equivalently as, 

1

𝑐2

𝜕2𝑢

𝜕2𝑡
 + ∇log ρ ∙  ∇𝑢 − ∇2𝑢 =  𝜌𝑠𝛿(𝒙 − 𝒙𝟎). (2) 

 

In this form, computation of nested spatial derivatives at 

each timestep is avoided. Instead, ∇log ρ can be 

precomputed and stored in memory. Equation (2) provides 

insight into the role of density in the wave equation. It 

indicates that, away from s, only contrasts in log ρ matter 

and there is no zero-wavenumber information about density 

available from the wavefield. This is consistent with 

formulations of reflectivity, where only ratios involving 

density contribute (Li and Peng, 2017). Note, the similarity 

between the density contribution above and the intercept in 

the AVA equation, 

 

𝑅(𝜃 = 0) =
1

2
(

∆𝑐

𝑐
+

∆𝜌

𝜌
) ≅

1

2
(∇(log c +  log ρ)). (3) 

 

We can generalize equation (2) to represent the dot product 

of a spatially varying vector parameter ∇𝑟𝑖 and the gradient 

of the scalar wavefield ∇u, 

 

1

𝑐2

𝜕2𝑢

𝜕2𝑡
+ ∇𝑟𝑖 ∙ ∇𝑢 − ∇2𝑢 = 𝜌𝑠𝛿(𝒙 −  𝒙𝟎). (4) 

 

The ∇𝑟𝑖 term can be the intercept-reflectivity given by 

equation (3). It follows that we could modify the wave 

equation by adding additional scattering terms to serve other 

purposes such as including the AVA gradient term, 

 

1

𝑐2

𝜕2𝑢

𝜕2𝑡
+ ∇𝑟𝑖 ∙ ∇𝑢 + ∇𝑟𝑔𝑠𝑖𝑛2θ ∙ ∇𝑢 − ∇2𝑢 

                                              = 𝜌𝑠𝛿(𝒙 − 𝒙𝟎) (5) 

 

In general, any number of scattering, ∇𝑟𝑗, and directivity, 𝑑𝑗 , 

terms can be included (e.g., AVA curvature term), 

 

1

𝑐2

𝜕2𝑢

𝜕2𝑡
+ ∑ ∇𝑟𝑗 ∙ 𝑑𝑗∇𝑢

𝑚

𝑗=0

− ∇2𝑢 = 𝜌𝑠𝛿(𝒙 − 𝒙𝟎) (6) 

 

The ∇𝑟𝑗 terms provide the scattering needed to generate the 

reflection tomographic term (rabbit ears). 

 

Given an objective function (F) of the form, 

 

F =  
1

2
‖𝒅 −  𝑳 (𝒎)‖2

2 (7) 

 

where d is the observed data, L is the wave equation operator 

and m are models of interest, we can compute gradients with 

respect to velocity and ∇𝑟𝑗 via the adjoint-state method. 

The separation of migration and tomographic terms are 

achieved using non-stationary filters discriminating by 

scattering angle, which is applied as a wavenumber domain 

preconditioner. Further constraints can be included such as a 

structurally oriented smoothing approach applied to velocity 

(Fehmers & Höcker, 2003). 

 

Note that the observed data d contains ghosts, multiples and 

the source wavelet but the inverted quantity ∇𝑟𝑗 is a migrated 

image with these attenuated. This inversion performs 

deghosting, demultiple and designature. Running R-FWI to 

high frequency provides reflectivity image(s) for both 

structural and quantitative interpretation, without the need 

for a conventional processing and imaging workflow. 

 

Although this approach applies easily to any anisotropic 

symmetry, for simplicity, we have only presented the 

isotropic case. We also note that it is easily extended to least 

squares reverse-time migration. 

 

Because the foregoing has increased the number of 

parameters to be inverted for, it is now imperative that we 

deal with the problems associated with multi-parameter 

inversion as discussed in the introduction. 

 

Quasi-Newton adaptive gradient scheme 

 

L-BFGS is a second order quasi-Newton optimizer which 

approximates a diagonal plus low-rank inverse Hessian 

matrix. A step in this algorithm estimates the diagonal 

component of the inverse Hessian from a scaled identity 

matrix based on the curvature along the most recent search 

direction (Nocedal and Wright, 2006), 

 

𝛼 =  
𝒔𝑇𝒚

𝒚𝑇𝒚
(6) 

 

where y and s are the change in gradient and change in 

model, respectively, since the previous iteration. Note that 

L-BFGS’ positive definite requirement necessitates α > 0. 

Since the Wolfe conditions mean that the curvature 

condition sTy > 0, and so must yTy > 0, which guarantees that 

α > 0.  Equation (6) results in a single scalar to modify the 

Hessian so that a unit step length is likely to be accepted.  

 

In a multiparameter inversion where the inverted parameters 

are of different scales, a single scalar, , is inappropriate as 

it will be biased towards the stronger parameter(s). 

Additionally, in both single and multi-parameter inversion, 

the inverse Hessian controls the compensation for variations 

in illumination. It is typically the case that the eigenvalues 

of the Hessian matrix contain a wide range of different 

values, causing slow convergence in regions of the inverted 

model and between parameters. Typically, image domain 

preconditioners are used in conjunction with L-BFGS to 
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R-FWI with augmented wave equation 

improve convergence and help with illumination 

compensation because the quasi-Newton optimization alone 

can take many iterations to resolve acquisition sampling 

issues. As a result, there will be poor convergence in model 

locations where the preconditioning is insufficient. 

Unfortunately, this is likely to correspond with complex 

deeper structures where the R-FWI update is most needed.  

 

An improvement is to choose q = pm scalars where p is the 

number of inverted parameters and m is the number of model 

points per parameter. This is achieved using an AdaGrad-

type scheme to improve the L-BFGS inverse Hessian 

estimate. We propose to replace αI with a new quantity βM, 

𝛽 =  
𝒚𝑇𝒔

𝒚𝑇𝑴𝒚
(7) 

𝐌 = [diag (∑ 𝐠𝐢𝐠𝐢
𝐓

n

i=0

) + ε]

−
1
2

 (8) 

 

where n is the iteration number, g is the gradient and ε is 

some small number to stabilize the inverse. Like α, β is 

guaranteed to be greater than 0 and ensures the positive 

definite property required by L-BFGS. This general 

approach is not limited to only improving the diagonal 

estimate of the Hessian: off-diagonal terms and matching 

filters can be included to help reduce parameter crosstalk. 

 

Using this formulation, initially each parameter class, 

indeed, every element in the model, will receive an equal 

weight in the inversion. With each subsequent iteration 

every element in the model will receive updated weights that 

modify the sensitivity of the objective function to each 

element of the model so that the relative sensitivities and 

coupling of the various parameters are compensated for. 

This overcomes parameter bias and avoids the need for 

illumination compensation preconditioners. Regularization 

of the inverse Hessian is incorporated to avoid biasing the 

inversion towards noise. 

 

Real data example 

 

We applied our new approach to a dual-source / 8-streamer 

dataset from the Australian NW continental shelf. The initial 

velocity model was tomographically derived from residual 

moveout picks. Anisotropy was initially parameterized using 

wells, with epsilon further refined using tomography. 

Several rounds of diving wave FWI were then performed 

increasing from 4 Hz up to 12 Hz. We then applied reflection 

FWI to update the deeper parts of the model. 

 

In Figure 1, using our new R-FWI formulation, we compare 

the convergence rates of the AdaGrad + L-BFGS scheme to 

a standard L-BFGS optimizer. The cost function achieved 

using the standard L-BFGS approach after 15 iterations is 

achieved using AdaGrad + L-BFGS in ~7 iterations. 

 

 
Figure 1: Convergence of conventional L-BFGS (blue) versus 

AdaGrad + L-BFGS (red). 

 

Figures 2a & b show Kirchhoff migrated common image 

gathers with the initial and updated velocity models. The 

new reflection FWI model demonstrates a clear 

improvement in gather flatness.  

 
 Figure 2: a), b) Kirchhoff migrated common image gathers with 

the initial and updated velocity model, respectively. 
 

The initial and updated models overlain on their Kirchhoff 

preSDM images are shown in Figures 3a & b. The updated 

velocity model demonstrates good geological conformance, 

as shown by the black arrows.  Consequently, their stacks in 

Figures 4a & b are better focused and deeper events appear 

structurally simplified, with the flat spot becoming flatter. 

The green arrows show areas of notable improvement, the 

red arrows show the same location with the initial model. 

 

Figures 5a & b show a depth slice at 1340 m (~130 m below 

seabed) between a Kirchhoff preSDM stack with the updated 

velocity and the inverted intercept-reflectivity. The 

Kirchhoff stack was filtered to the intercept-reflectivity 

bandwidth and is using processed data as input. We observe 

a good correlation between them but better event delineation 

in the latter despite only using 1/3 of the unprocessed shots. 

a) b) 
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R-FWI with augmented wave equation 

Conclusions 

 

We have described a novel solution to the reflection FWI 

problem. This approach involves a simultaneous inversion 

for velocity and a vector derivative quantity with intercept-

like scattering properties. This can be extended to include 

any number of scattering terms in general. An application of 

this method involving velocity and intercept-reflectivity was 

demonstrated on real data where the velocity update showed 

a clear improvement in imaging. Despite the input being raw  

recorded data, the intercept-reflectivity output has attenuated 

multiples, ghosts and the source wavelet and compares well 

with the band-passed Kirchhoff migration which has 

processed gathers as input. This solution was implemented 

with an efficient generic multi-parameter inversion scheme 

that accelerates convergence by resolving parameter scale 

differences and providing a better estimate of the Hessian 

matrix. It is equally applicable to single parameter class 

inversions as it can better compensate for illumination and 

does not rely on image domain amplitude compensation 

preconditioners.  

 
Figure 3: a), b) Kirchhoff preSDM stacks using initial and updated 

velocity, respectively, overlain with their velocity model. 

 

 

 
Figure 4: a), b) Kirchhoff preSDM stacks using initial and 

reflection FWI updated velocity, respectively. 
 

 
Figure 5: A depth slice at 1340 m of a) the Kirchhoff preSDM 

using the updated velocity model, and b) the intercept-reflectivity 
computed using the proposed inversion method. 
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